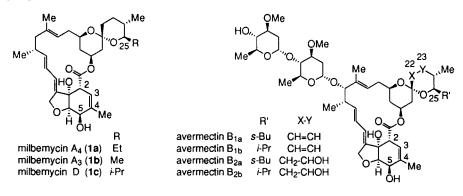


0040-4039(94)01681-X

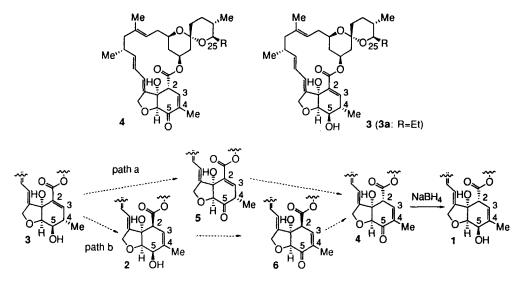

Regeneration of the Milbemycin's C₂-C₄ Structural Arrangement from Δ^2 -Milbemycin

Satoru Naito,* Yuka Owatari and Akio Saito

Medicinal Chemistry Research Laboratories, Sankyo Co,. Ltd. 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 104, Japan

Abstract: An efficient methodology for converting Δ^2 -milbemycin A₄ to milbemycin A₄ is described, whereby the Δ^2 -isomer is initially converted to the C₂ epimer which in turn is epimerized at C₂ to its natural configuration. The key transformation is a Dess-Martin type oxidation at C₅ of the C₂ epimer in order to enhance the stability of the Δ^3 -double bond and facilitate epimerization.

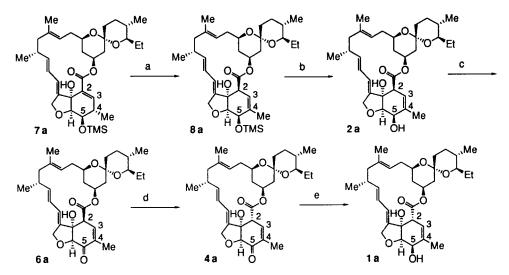
Milbemycins are a family of 16-membered ring macrolides which were first isolated in 1972 and later structurally elucidated by Sankyo chemists.¹⁾ Shortly after this discovery, structurally-related avermectins were isolated by Merck scientists.²⁾ Since then, enormous efforts toward the total synthesis of these compounds have been made due to their structural uniqueness, and their potent anthelmintic, acaricidal and insecticidal activities. Various synthetic strategies for the substructures of milbemycins and avermectins, in particular the spiroketal and hexahydrobenzofuran portions, and the oleandrose disaccharide moiety, have been studied and devised, and this finally culminates in the syntheses of such natural products being reported from several groups.³⁾



A major obstacle for accomplishing the total synthesis of milberrycins and avermeetins has been to control the lability of both the C₂ center and the Δ^3 -double bond. Under basic conditions (0.05M KOH in MeOH-H₂O), for example, substrate 1 is apt to epimerize to the C₂ epimer 2 and thus irreversibly lead to the Δ^2 -isomer 3 (equation 1).⁴)

$$\begin{array}{c} & & & & \\ & & & & \\ &$$

In the syntheses reported by Hanessian⁵) and Danishefsky,⁶) relatively stable Δ^2 -isomers were first synthesized, and deconjugation of the Δ^2 -double bond into the Δ^3 position and subsequent epimerization at C₂ under equilibrium conditions⁷) were carried out. White et al.⁸) ingeniously constructed a C_2 epimer, which was similarly epimerized at C₂ to give a natural isomer. In all such cases, the lack of selectivity in these epimerization reactions is evident from the natural isomers being afforded merely in 30~40% yield, together with the corresponding starting materials and the Δ^2 -isomers which is in accordance with the equation 1. In order to obviate the problems of this procedure, the following strategies were developed: (1) generation of the Δ^3 -double bond by elimination of selenoxide at C₄,⁹⁾ (2) a sequence which involves the use of an intermediate with an exo double bond at C4.¹⁰⁾ The former is moderately selective in the elimination reaction and the latter necessitates multiple steps for regenerating the Δ^3 -double bond. On the other hand, a somewhat straightforward approach to the problem, whereby the C_2 - C_4 structural arrangement is correctly established from the onset, was disclosed by Hirama et al_{1} ,¹¹ albeit, the lactonization in the final stage suffers from a similar lability to that mentioned above. In this paper, a modified procedure for the Δ^2 -double bond migrationepimerization process is described, whereby introduction of a carbonyl group at C₅, by conjugative stabilization, holds the Δ^3 -double bond in place whilst the epimerization at C₂ can ensue.


In the course of our program to develop anthelmintics from milbemycins, 5-oxomilbemycin derivatives were utilized as the key intermediates for modifying the natural milbemycins.¹²) The carbonyl group at C₅, which is a masking group of the original hydroxyl group, has its amenity in that it can be selectively reduced with NaBH₄ to provide the natural 5 β -hydroxyl group.¹³) Encouraged by this observation, **4** was identified

Scheme 1.

as an objective intermediate starting from Δ^2 -isomer 3. It was assumed that conversion of the C₅ hydroxyl group of the Δ^2 -isomer 3 to a carbonyl group would induce the Δ^2 -double bond to migrate into conjugation with this newly-formed carbonyl group, and thus the C₂ center would attain its natural configuration under certain conditions (Scheme 1, path a). However, attempts to testify this assumption were thwarted. Various oxidation reactions (PCC, MnO₂, SO₃-pyridine, DMSO-TFAA and Dess-Martin periodinane) on the Δ^2 -isomer of milbemycin A₄ (3a)¹⁴) failed to generate the corresponding ketone in our hands; instead only 3a was recovered or decomposition products were identified.

Next, we focused on the C₂ epimer 2. Similarly, it was expected that oxidation of 2 would provide the compound 6 suitable for the epimerization at C₂ (Scheme 1, path b). The C₂ epimer of milberrycin A₄ was prepared from 5-O-silyl-protected Δ^2 -isomer 7a¹⁴) by a modified Hanessian's procedure⁷) as follows. Treatment of 7a with 10 equiv of LDA in THF at -78°C for 10 min, and subsequent addition of a pre-cooled solution of acetic acid (15 equiv) in THF at -78°C over 5 min gave the epimer 8a in 81% yield. This reaction was cautiously kept at -78°C, since an increase in reaction temperature, even during the quenching process, would give rise to a complex mixture. Use of a t-butyldimethylsilyl group (TBDMS) to protect the C5 hydroxyl group was superseded by trimethylsilyl (TMS) protection since the TBDMS deprotection reaction was sluggish and accompanied with side reactions. Addition of 1N HCl in MeOH solution enabled facile deprotection of the epimer 8a to give the 2-epi-milberrycin 2a (94%, mp=139~141°C). Rather fortuitously, it was found that Dess-Martin periodinane¹⁵⁾ could efficiently oxidize the hydroxyl group at C₅ of 2a to afford a compound which was assumed to be the 2-epi-5-oxo derivative 6a by ¹H NMR.¹⁶) As the compound 6a was unstable, it was immediately subjected to epimerization. To our delight, treatment of the crude mixture with imidazole in CH2Cl2 at 0°C provided the 5-oxomilbemycin 4a, which was confirmed by comparison of the ¹H NMR and HPLC data with an authentic sample,¹³⁾ and subsequent reduction of the carbonyl group at C₅ with NaBH4 at -40°C gave the natural milberrycin 1a (66% yield for three steps from 2a).¹⁷⁾

(a) LDA (10equiv), THF, -78°C, 10 min, then AcOH (15equiv); (b) HCI / MeOH, rt; (c) Dess-Martin periodinane (2 equiv), CH₂Cl₂, 0°C; (d) imidazole (0.11M) in CH₂Cl₂, 0°C; (e) NaBH₄ (excess), MeOH, -40~0°C.

Scheme 2.

In summary the procedure described above holds certain self-evident advantages over other reported methodologies for converting Δ^2 -isomers to the natural skeleton, although this procedure is to be extended to other milbertycins and derivatives in the avermedian series.

References and Notes

- Aoki, A.; Fukuda, R.; Nakayabu, T.; Ishibashi, K.; Takeuchi, C.; Ishida, M. Japanese Patent, JP 7257058 (1972). Mishima, H.; Kurabayashi, M.; Tamura, C.; Sato, S.; Kuwano, H.; Saito, A.; Aoki, A. Abstract Papers 18th Symp. Chem. Natural Products, Kyoto, 1974, pp. 309.
- Albers-Schönberg, G.; Arison, B. H.; Chabala, J. C.; Douglus, A. W.; Escola, P.; Fisher, M. H.; Lusi, A.; Mrozik, H.; Smith, J. L.; Tolman, R. L. J. Am. Chem. Soc., 1981, 103, 4216. Springer, J. P.; Arison, B. H.; Hirshfield, J. M.; Hoogsteen, K., *ibid.*, 1981, 103, 4221.
- For reviews, see: Davies, H. G.; Green, R. H. Natural Product Reports, 1986, 3, 87. Davies, H. G.; Green, R. H. Chem. Soc. Rev., 1991, 20, 211. Davies, H. G.; Green, R. H. *ibid.*, 1991, 20, 271. Blizzard, T.; Fisher, M. H.; Mrozik, H.; Shih, T. L.: Avermectins and Milbemycins. In Recent Progress in the Chemical Synthesis of Antibiotics; Lukacs, G.; Ohno, M. Eds.; Springer-Verlag: Berlin, 1990; pp. 65. Peak, S. A.; Smith, A. B., III.: Synthetic Routes to the Oxahydrindene Subunit of the Avermectin-Milbemycin Family of Antiparasitic Agents: A Review. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1993; Vol. 12, pp. 3.
- Pivnichny, J. V.; Shim, J-S. K.; Zimmerman, L. A. J. Pharm. Sci., 1983, 72, 1447. Pivnichny, J. V.; Arison, B. H.; Preiser, F. A.; Shim, J-S. K.; Mrozik, H. J. Agric. Food Chem., 1988, 36, 826.
- 5. Hanessian, S.; Ugolini, A.; Dubé, D.; Hodges, P. J.; André, C. J. Am. Chem. Soc., 1986, 108, 2776.
- 6. Danishefsky, S. J.; Selnick, H. G.; Armistead, D. M.; Wincott, F. E. J. Am. Chem. Soc., 1987, 109, 8119.
- 7. Fraser-Reid, B.; Wolleb, H.; Faghih, R.; Barchi, J. Jr. J. Am. Chem. Soc., 1987, 109, 933. Hanessian, S.; Dubé, D.; Hodges, P. J. *ibid.*, 1987, 109, 7063.
- 8. White, J. D.; Bolton, G. L. J. Am. Chem. Soc., 1990, 112, 1626.
- Armstrong, A.; Ley, S. V. Synlett, 1990, 323. Martin, D. D.; Grice, D.; Kolv, H. C.; Ley, S. V.; Madin, A. *ibid.*, 1990, 326. Armstrong, A.; Ley, S.; V. Madin, A.; Mukherjee, S. *ibid.*, 1990, 328. Ford, M. J.; Knight, J. G.; Ley, S. V.; Vile, V. *ibid.*, 1990, 331.
- 10. Fraser-Reid, B.; Barchi, J. Jr.; Faghih, R. J. Org. Chem., 1988, 53, 923.
- 11. Hirama, M.; Noda, T.; Yasuda, S.; Ito, S. J. Am. Chem. Soc., 1991, 113, 1830.
- 12. Saito, A.; Naito, S.; Kobayashi, M.; Tsuchiya, M.; Toyama, T.; Kaneko, S.; Nanba, T.; Morisawa, Y. J. Antibiot., 1993, 46, 1252.
- Ono, M.; Mishima, H.; Ide, J.; Muramatsu, S. J. Antibiot., 1983, 36, 980. Tsukamoto, Y.; Sato, K.; Mio, S.; Sugai, T.; Yanai, T.; Muramatsu, S.; Nakada, Y.; Ide, J. Agric. Biol. Chem., 1991, 55, 2615.
- 3a and 7a were prepared from milbemycin A₄ by the following reactions: (1) protection of the C₅ hydroxyl group of 1a (TBDMSCl, imidazole, DMF), (2) conjugation (DBU, toluene), (3) deprotection (10% TsOH, MeOH) to give 3a, and (4) protection of the C₅ hydroxyl group (TMSCl, Et₃N, CH₂Cl₂) to give 7a. For conjugation, see: Selnick, H. G.; Danishefsky, S. J. Tetrahedron Lett., 1989, 28, 4955.
- 15. Dess, B. D.; Martin, J. C. J. Org. Chem., 1983, 48, 4155.
- 16. The reaction was monitored by TLC (RP-18, F₂₅₄). Partial ¹H NMR data for 6a: (270MHz, CDCl₃) δ 6.68 (1H, m, H₃), 6.03 (1H, br d, J=10.6Hz, H₉), 5.68 (1H, dd, J=10.6, 15.2Hz, H₁₀), 5.53 (1H, dd, J=7.9, 15.2Hz, H₁₁), 5.38~5.50 (1H, m, H₁₉), 4.91 (1H, br d, J=8.6Hz, H₁₅), 4.64 (1H, dd, J=2.0, 15.2Hz, H_{8a}), 4.33 (1H, s, H₆), 4.28 (1H br d, J=15.2Hz, H_{8a}), 3.90 (1H, m, H₂), 3.61~3.70 (1H, m, H₁₇), 3.08 (1H, dt, J=2.6, 9.2Hz, H₂₅).
- 17. Examination of the product mixture by HPLC on a YMC ODS AM-312 column with UV detection at 254 nm (95:5 CH₃CN-H₂O, 1ml/min) revealed that milberrycin A₄ (1a), C₂ epimer 2a and Δ^2 -isomer 3a were present in the ratio of 91:6:3.

(Received in Japan 13 May 1994; accepted 18 July 1994)